Part Number Hot Search : 
SS820 KT940A BD437T 74LVX245 75010 MC339 81ATR SGM8624
Product Description
Full Text Search
 

To Download MAX4626EUK Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MAX4626EUK Rev. A
RELIABILITY REPORT FOR MAX4626EUK PLASTIC ENCAPSULATED DEVICES
September 8, 2001
MAXIM INTEGRATED PRODUCTS 120 SAN GABRIEL DR. SUNNYVALE, CA 94086
Written by
Reviewed by
Jim Pedicord Quality Assurance Reliability Lab Manager
Bryan J. Preeshl Quality Assurance Executive Director
Conclusion The MAX4626 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards. Table of Contents I. ........Device Description II. ........Manufacturing Information III. .......Packaging Information IV. .......Die Information V. ........Quality Assurance Information VI. .......Reliability Evaluation ......Attachments
I. Device Description A. General The MAX4626 is a low-on-resistance, low-voltage, single-pole/single-throw (SPST) analog switch that operates from a +1.8V to +5.5V single supply. The MAX4626 is normally open (NO). This device also has a fast switching speed (t ON = 50ns max, tOFF = 30ns max). When powered from a +5V supply, the MAX4626 offers 0.5 ohms max on-resistance (RON) with 0.1 ohms max RON flatness, and its digital logic input is TTL compatible. This switch also features overcurrent protection to prevent device damage from short circuits and excessive loads.
B. Absolute Maximum Ratings Item Voltages Referenced to GND V+, IN, NO, NC, COM (Note 1) Continuous Current NO, NC to COM Peak Current NO, NC to COM (pulsed at 1ms, 10% duty cycle max) Continuous Power Dissipation (TA = 700C) Junction Temperature Storage Temp. Lead Temp. (10 sec.) Power Dissipation 5 Lead SOT-23 Derates above +70C 5 Lead SOT-23 Rating
-0.3V to +6V -0.3V to (V+ + 0.3V) 400mA 800mA +150C -65C to +150C +300C 571mW 7.1mW/C
II. Manufacturing Information A. Description/Function: B. Process: C. Number of Device Transistors: D. Fabrication Location: E. Assembly Location: F. Date of Initial Production: III. Packaging Information A. Package Type: B. Lead Frame: C. Lead Finish: D. Die Attach: E. Bondwire: F. Mold Material: G. Assembly Diagram: H. Flammability Rating: I. 5 Lead SOT-23 Copper Solder Plate Non-Conductive Gold (1 mil dia.) Epoxy with silica filler Buildsheet # 05-1201-0129 Class UL94-V0 1, Low-Voltage, Single-Supply SPDT Analog Switch T06 (0.6 micron TSMC CMOS) 186 Taiwan, USA Malaysia January, 2000
Classification of Moisture Sensitivity per JEDEC standard JESD22-A112: Level 1
IV. Die Information A. Dimensions: B. Passivation: C. Interconnect: D. Backside Metallization: E. Minimum Metal Width: F. Minimum Metal Spacing: G. Bondpad Dimensions: H. Isolation Dielectric: I. Die Separation Method: 57 x 35 mils Si3N4/SiO2 (Silicon nitride/ Silicon dioxide) Al/Si/Cu (Aluminum/ Silicon/ Copper) None Metal 1: 0.9 microns; Metal 2: 0.9 microns (as drawn) Metal 1: 0.8 microns; Metal 2: 0.8 microns (as drawn) 5 mil. Sq. SiO2 Wafer Saw
V. Quality Assurance Information A. Quality Assurance Contacts: Jim Pedicord (Reliability Lab Manager) Bryan Preeshl (Executive Director of QA) Kenneth Huening (Vice President)
B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects. C. Observed Outgoing Defect Rate: < 50 ppm D. Sampling Plan: Mil-Std-105D VI. Reliability Evaluation A. Accelerated Life Test The results of the 135C biased (static) life test are shown in Table 1. Using these results, the Failure Rate () is calculated as follows: = 1 = MTTF 4.04 192 x 4389 x 160 x 2 (Chi square value for MTTF upper limit)
Thermal acceleration factor assuming a 0.8eV activation energy = 14.98 x 10-9 = 14.98 F.I.T. (60% confidence level @ 25C)
This low failure rate represents data collected from Maxim's reliability qualification and monitor programs. Maxim also performs weekly Burn-In on samples from production to assure the reliability of its processes. The reliability required for lots which receive a burn-in qualification is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on lots exceeding this level. Maxim also performs 1000 hour life test monitors quarterly for each process. This data is published in the Product Reliability Report (RR-1L). B. Moisture Resistance Tests Maxim evaluates pressure pot stress from every assembly process during qualification of each new design. Pressure Pot testing must pass a 20% LTPD for acceptance. Additionally, industry standard 85C/85%RH or HAST tests are performed quarterly per device/package family. C. E.S.D. and Latch-Up Testing The AH25Z-2Z die type has been found to have all pins able to withstand a transient pulse of 600V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of 250mA and/or 20V.
Table 1 Reliability Evaluation Test Results MAX4626EUK
TEST ITEM TEST CONDITION FAILURE IDENTIFICATION SAMPLE SIZE NUMBER OF FAILURES
Static Life Test (Note 1) Ta = 135C Biased Time = 192 hrs. Moisture Testing (Note 2) Pressure Pot Ta = 121C P = 15 psi. RH= 100% Time = 168hrs. Ta = 85C RH = 85% Biased Time = 1000hrs.
DC Parameters & functionality
160
1
DC Parameters & functionality
77
0
85/85
DC Parameters & functionality
77
0
Mechanical Stress (Note 2) Temperature Cycle -65C/150C 1000 Cycles Method 1010 DC Parameters 77 0
Note 1: Life Test Data may represent plastic D.I.P. qualification lots for the SOT-23 package. Note 2: Generic Package/Process Data.
Attachment #1 TABLE II. Pin combination to be tested. 1/ 2/
Terminal A (Each pin individually connected to terminal A with the other floating) 1. 2. All pins except VPS1 3/ All input and output pins
Terminal B (The common combination of all like-named pins connected to terminal B) All VPS1 pins All other input-output pins
1/ Table II is restated in narrative form in 3.4 below. 2/ No connects are not to be tested. 3/ Repeat pin combination I for each named Power supply and for ground (e.g., where VPS1 is VDD, VCC, VSS, VBB, GND, +VS, -VS, VREF, etc). 3.4 a. b. Pin combinations to be tested. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., V , or V SS1 SS2 or V SS3 or V CC1 , or V CC2 ) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
c.
Each input and each output individually connected to terminal A with respect to a combination of all the
TERMINAL C
R1 S1 R2
TERMINAL A REGULATED HIGH VOLTAGE SUPPLY
S2 C1
DUT SOCKET
SHORT CURRENT PROBE (NOTE 6)
TERMINAL B
R = 1.5k C = 100pf
TERMINAL D
other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open. Mil Std 883D Method 3015.7 Notice 8


▲Up To Search▲   

 
Price & Availability of MAX4626EUK

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X